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In the year 2000, exactly one hundred years after David Hilbert posed
his now famous list of 23 open problems, The Clay Mathematics Insti-
tute (CMI) announced its seven Millennium Problems. (http://www.
claymath.org/millennium). Any person to first publish a correct so-
lution, proof or disproof of one of the following problems: 1) Birch
and Swinnerton–Dyer Conjecture, 2) Hodge Conjecture 3) Navier–Stokes
Equations 4) P versus NP 5) Poincaré Conjecture 6) Riemann Hypothe-
sis 7) Yang–Mills Theory, does not only earn immortal fame but will be
awarded the generous sum of one million US dollars. With Perelman’s
(likely) proof of the Poincaré Conjecture, the continued optimism about
an impending proof of the Riemann Hypothesis, and the omission of such
famous problems as Twin Primes and Goldbach, it seems the CMI would
have been wise to have followed Hilbert’s example in announcing not 7
but 23 Millennium Problems. The Gazette will try to repair the situation,
and has asked leading Australian mathematicians to put forth their own
favourite ‘Millennium Problem’. Due to the Gazette’s limited budget, we
are unfortunately not in a position to back these up with seven-figure
prize monies, and have decided on the more modest 10 Australian dollars
instead.
In this issue Igor Shparlinski will explain his favourite open problem that
should have made it to the list.

Exponential and character sums with polynomials

1 Introduction

Let p be an odd prime. We denote e(z) = exp(2πiz/p) and use χ to denote a non-principal
multiplicative character modulo p. An enormous number of number theoretic (and not only)
results depend on bounds of exponential and character sums

S(N ; f) =
∑

1≤n≤N

e(f(n)) and T (N ; f) =
∑

1≤n≤N

χ(f(n))

with a polynomial f with integer coefficients of degree n ≥ 1, see [7, 8, 9, 10, 11, 12, 13] and
references there in. The celebrated Weil bound asserts that for N = p, that is, for complete
sums we have

|S(p; f)| ≤ (n− 1)p1/2 and |T (p; f)| ≤ (n− 1)p1/2 (1)

unless there is “an obvious” reason why this cannot be true. In the case of the sums S(N ; f)
this reason is simply the fact that f is a constant polynomial modulo p, In the case of the
sums T (N ; f) this reason is simply the fact that f is a kth power of another polynomial
modulo p, where k is the order of the character χ. Under a similar conditions one has bounds
for incomplete sums

|S(N ; f)| = O(np1/2 log p) and |T (N ; f)| = O(np1/2 log p) (2)
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for every N ≤ p.

2 Polynomials of large degree

One immediately remarks that the bounds (1) are useless if n > p1/2. Despite a half a
century history of attempts to obtain a general nontrivial result beyond the square-root
bound, we still do not know any such result. However, in some special cases, very ingenious
methods have been invented, see [1, 2, 5, 6, 4], which may be a good indication (and even a
way to go) that sich a non-trivial general bound exists. Proving such a bound or showing that
it does not exist would have a tantalasing effect on a vast number of areas such as number
theory, algebraic geometry, coding theory, theoretic computer science and cryptography.

3 Short sums

Even if n is small (for example n = 2) the bounds (2) are also useless for “short” sums
with N ≤ p1/2 and generally the situation seems to be a mirror reflection of the situation
with polynomials of large degree. However, here there is one important exception for linear
polynomials. Namely, the celebrated Burgess bound [3] asserts that if for any ε > 0 there is
δ > 0 such that if N ≥ p1/4+ε then∣∣∣∣∣

N∑
n=1

χ(n + a)

∣∣∣∣∣ = O(Np−δ) (3)

for any integer a, see also [7, 10]. Curiously enough, all know proofs of this bound are based
on the Weil bound (1).

This naturally leads to two questions:
• What about even shorter sums? For example with N ≥ pε?

This question seems to be extremely hard, such a bound does not even follow from
the Extended Riemann Hypothesis (at least not in a obvious way, unless a = 0).
Moreover it would immediately imply the famous Vinogradov’s conjectures about
the smallest quadratic non-residue and primitive root modulo p (both are believed
to be of order O(pε). Thus it would probably be too ambitious to believe that we
will be able to prove a nontrivial bound for N of order pε. However, moving beyond
1/4 + ε could be a much easier but still enormosuly important achievement.

• What about extending the Burgess bound (3) to polynomials of higher degree? For
example n = 2?
Again, it seems that even the Extended Riemann Hypothesis is of no help here.
Besides being a very natural number theoretic problem, such a bound would have
a number of applications, including better analysis of a polynomial factorisation
algorithm over finite fields, see Section 1.1 (and Problem 1.3 in particular) in [11].
Even the special case of quadratic polynomials of the form f(X) = (X + a)(X + b)
(the only one needed for the aforementioned purpose) seems to be hard (however,
it is not infeasible to hope for some progress in the nearest future).
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